Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34531300

RESUMO

The Down syndrome cell adhesion molecule (DSCAM) belongs to the immunoglobulin superfamily (IgSF) and plays important roles in neural development. It has a large ectodomain, including 10 Ig-like domains and 6 fibronectin III (FnIII) domains. Previous data have shown that DSCAM can mediate cell adhesion by forming homophilic dimers between cells and contributes to self-avoidance of neurites or neuronal tiling, which is important for neural network formation. However, the organization and assembly of DSCAM at cell adhesion interfaces has not been fully understood. Here we combine electron microscopy and other biophysical methods to characterize the structure of the DSCAM-mediated cell adhesion and generate three-dimensional views of the adhesion interfaces of DSCAM by electron tomography. The results show that mouse DSCAM forms a regular pattern at the adhesion interfaces. The Ig-like domains contribute to both trans homophilic interactions and cis assembly of the pattern, and the FnIII domains are crucial for the cis pattern formation as well as the interaction with the cell membrane. By contrast, no obvious assembly pattern is observed at the adhesion interfaces mediated by mouse DSCAML1 or Drosophila DSCAMs, suggesting the different structural roles and mechanisms of DSCAMs in mediating cell adhesion and neural network formation.


Assuntos
Moléculas de Adesão Celular/química , Adesão Celular , Síndrome de Down/patologia , Proteínas de Drosophila/química , Neurogênese , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Camundongos , Neuritos
2.
J Biol Chem ; 295(46): 15727-15741, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32907880

RESUMO

Scavenger receptors are a superfamily of membrane-bound receptors that recognize both self and nonself targets. Scavenger receptor class A (SR-A) has five known members (SCARA1 to -5 or SR-A1 to -A5), which are type II transmembrane proteins that form homotrimers on the cell surface. SR-A members recognize various ligands and are involved in multiple biological pathways. Among them, SCARA5 can function as a ferritin receptor; however, the interaction between SCARA5 and ferritin has not been fully characterized. Here, we determine the crystal structures of the C-terminal scavenger receptor cysteine-rich (SRCR) domain of both human and mouse SCARA5 at 1.7 and 2.5 Å resolution, respectively, revealing three Ca2+-binding sites on the surface. Using biochemical assays, we show that the SRCR domain of SCARA5 recognizes ferritin in a Ca2+-dependent manner, and both L- and H-ferritin can be recognized by SCARA5 through the SRCR domain. Furthermore, the potential binding region of SCARA5 on the surface of ferritin is explored by mutagenesis studies. We also examine the interactions of ferritin with other SR-A members and find that SCARA1 (SR-A1, CD204) and MARCO (SR-A2, SCARA2), which are highly expressed on macrophages, also interact with ferritin. By contrast, SCARA3 and SCARA4, the two SR-A members without the SRCR domain, have no detectable binding with ferritin. Overall, these results provide a mechanistic view regarding the interactions between the SR-A members and ferritin that may help to understand the regulation of ferritin homeostasis by scavenger receptors.


Assuntos
Ferritinas/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Cinética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Receptores Depuradores Classe A/química , Receptores Depuradores Classe A/genética
3.
Nat Microbiol ; 4(12): 2331-2346, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31477895

RESUMO

The special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection. Hrd1 interacts directly with the deubiquitinating enzyme Usp15. Unlike the classical function of Hrd1 in endoplasmic reticulum-associated degradation, Usp15 is not degraded but loses its deubiquitinating activity for IκBα deubiquitination, resulting in excessive NF-κB activation. Importantly, Hrd1 deficiency in macrophages protects mice against lipopolysaccharide-induced septic shock, and knockdown of Usp15 in Hrd1-knockout macrophages restores the reduced IL-6 production. This study proposes that there is crosstalk between Hrd1 and TLR4, thereby linking the endoplasmic reticulum-plasma membrane function during bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , Retículo Endoplasmático/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Animais , Retículo Endoplasmático/patologia , Degradação Associada com o Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lipopolissacarídeos/efeitos adversos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteólise , Salmonella typhimurium , Choque Séptico/induzido quimicamente , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina/genética
4.
Proc Natl Acad Sci U S A ; 115(37): 9246-9251, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150416

RESUMO

Cell-cell adhesion is important for cell growth, tissue development, and neural network formation. Structures of cell adhesion molecules have been widely studied by crystallography, revealing the molecular details of adhesion interfaces. However, due to technical limitations, the overall structure and organization of adhesion molecules at cell adhesion interfaces has not been fully investigated. Here, we combine electron microscopy and other biophysical methods to characterize the structure of cell-cell adhesion mediated by the cell adhesion molecule Sidekick (Sidekick-1 and Sidekick-2) and obtain 3D views of the Sidekick-mediated adhesion interfaces as well as the organization of Sidekick molecules between cell membranes by electron tomography. The results suggest that the Ig-like domains and the fibronectin III (FnIII) domains of Sidekicks play different roles in cell adhesion. The Ig-like domains mediate the homophilic transinteractions bridging adjacent cells, while the FnIII domains interact with membranes, resulting in a tight adhesion interface between cells that may contribute to the specificity and plasticity of cell-cell contacts during cell growth and neural development.


Assuntos
Membrana Celular , Tomografia com Microscopia Eletrônica , Imunoglobulina G , Proteínas de Membrana , Animais , Adesão Celular/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina G/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Camundongos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...